3.184 \(\int \frac{x (2+3 x^2)}{\sqrt{3+5 x^2+x^4}} \, dx\)

Optimal. Leaf size=49 \[ \frac{3}{2} \sqrt{x^4+5 x^2+3}-\frac{11}{4} \tanh ^{-1}\left (\frac{2 x^2+5}{2 \sqrt{x^4+5 x^2+3}}\right ) \]

[Out]

(3*Sqrt[3 + 5*x^2 + x^4])/2 - (11*ArcTanh[(5 + 2*x^2)/(2*Sqrt[3 + 5*x^2 + x^4])])/4

________________________________________________________________________________________

Rubi [A]  time = 0.0323246, antiderivative size = 49, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.174, Rules used = {1247, 640, 621, 206} \[ \frac{3}{2} \sqrt{x^4+5 x^2+3}-\frac{11}{4} \tanh ^{-1}\left (\frac{2 x^2+5}{2 \sqrt{x^4+5 x^2+3}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(x*(2 + 3*x^2))/Sqrt[3 + 5*x^2 + x^4],x]

[Out]

(3*Sqrt[3 + 5*x^2 + x^4])/2 - (11*ArcTanh[(5 + 2*x^2)/(2*Sqrt[3 + 5*x^2 + x^4])])/4

Rule 1247

Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[
Int[(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x]

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
 1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x \left (2+3 x^2\right )}{\sqrt{3+5 x^2+x^4}} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{2+3 x}{\sqrt{3+5 x+x^2}} \, dx,x,x^2\right )\\ &=\frac{3}{2} \sqrt{3+5 x^2+x^4}-\frac{11}{4} \operatorname{Subst}\left (\int \frac{1}{\sqrt{3+5 x+x^2}} \, dx,x,x^2\right )\\ &=\frac{3}{2} \sqrt{3+5 x^2+x^4}-\frac{11}{2} \operatorname{Subst}\left (\int \frac{1}{4-x^2} \, dx,x,\frac{5+2 x^2}{\sqrt{3+5 x^2+x^4}}\right )\\ &=\frac{3}{2} \sqrt{3+5 x^2+x^4}-\frac{11}{4} \tanh ^{-1}\left (\frac{5+2 x^2}{2 \sqrt{3+5 x^2+x^4}}\right )\\ \end{align*}

Mathematica [A]  time = 0.0095622, size = 49, normalized size = 1. \[ \frac{3}{2} \sqrt{x^4+5 x^2+3}-\frac{11}{4} \tanh ^{-1}\left (\frac{2 x^2+5}{2 \sqrt{x^4+5 x^2+3}}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(x*(2 + 3*x^2))/Sqrt[3 + 5*x^2 + x^4],x]

[Out]

(3*Sqrt[3 + 5*x^2 + x^4])/2 - (11*ArcTanh[(5 + 2*x^2)/(2*Sqrt[3 + 5*x^2 + x^4])])/4

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 36, normalized size = 0.7 \begin{align*}{\frac{3}{2}\sqrt{{x}^{4}+5\,{x}^{2}+3}}-{\frac{11}{4}\ln \left ({\frac{5}{2}}+{x}^{2}+\sqrt{{x}^{4}+5\,{x}^{2}+3} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(3*x^2+2)/(x^4+5*x^2+3)^(1/2),x)

[Out]

3/2*(x^4+5*x^2+3)^(1/2)-11/4*ln(5/2+x^2+(x^4+5*x^2+3)^(1/2))

________________________________________________________________________________________

Maxima [A]  time = 0.952726, size = 53, normalized size = 1.08 \begin{align*} \frac{3}{2} \, \sqrt{x^{4} + 5 \, x^{2} + 3} - \frac{11}{4} \, \log \left (2 \, x^{2} + 2 \, \sqrt{x^{4} + 5 \, x^{2} + 3} + 5\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(3*x^2+2)/(x^4+5*x^2+3)^(1/2),x, algorithm="maxima")

[Out]

3/2*sqrt(x^4 + 5*x^2 + 3) - 11/4*log(2*x^2 + 2*sqrt(x^4 + 5*x^2 + 3) + 5)

________________________________________________________________________________________

Fricas [A]  time = 1.39899, size = 103, normalized size = 2.1 \begin{align*} \frac{3}{2} \, \sqrt{x^{4} + 5 \, x^{2} + 3} + \frac{11}{4} \, \log \left (-2 \, x^{2} + 2 \, \sqrt{x^{4} + 5 \, x^{2} + 3} - 5\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(3*x^2+2)/(x^4+5*x^2+3)^(1/2),x, algorithm="fricas")

[Out]

3/2*sqrt(x^4 + 5*x^2 + 3) + 11/4*log(-2*x^2 + 2*sqrt(x^4 + 5*x^2 + 3) - 5)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x \left (3 x^{2} + 2\right )}{\sqrt{x^{4} + 5 x^{2} + 3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(3*x**2+2)/(x**4+5*x**2+3)**(1/2),x)

[Out]

Integral(x*(3*x**2 + 2)/sqrt(x**4 + 5*x**2 + 3), x)

________________________________________________________________________________________

Giac [A]  time = 1.11169, size = 53, normalized size = 1.08 \begin{align*} \frac{3}{2} \, \sqrt{x^{4} + 5 \, x^{2} + 3} + \frac{11}{4} \, \log \left (2 \, x^{2} - 2 \, \sqrt{x^{4} + 5 \, x^{2} + 3} + 5\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(3*x^2+2)/(x^4+5*x^2+3)^(1/2),x, algorithm="giac")

[Out]

3/2*sqrt(x^4 + 5*x^2 + 3) + 11/4*log(2*x^2 - 2*sqrt(x^4 + 5*x^2 + 3) + 5)